Bestimmung von Ra in Umweltproben

S. Happel, TKI AWT, München, 12.11.2012

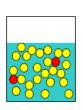
Inhalt

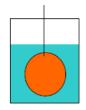
- Wässrige Proben
 - Ra-226/8 Methode
 - Ra-226 via Ra NucFilm Plättchen
- Schnellmethode zur Bestimmung von Ra-226 in Umweltproben
- Schnellmethode zur Bestimmung von Ra-228 in Wasserproben

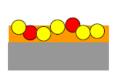
Bestimmung von Ra-226/8 in Wasserproben

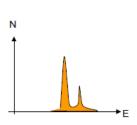
- Eichrom Methoden RAW03 (Kationenaustausch und LN Resin) und RAW04 (MnO₂ Resin und DGA)
- MnO₂ Resin erlaubt Analyse Ca-haltige Wässer
- Variante der RAW04 Methode optimiert von Sherrod Maxwell
 - 1,25g MnO2 pro 1L Wasser (Routine: 1 1,5L), pH 6 7
 - Zugabe von 25 mg Ca Minimum an Ca notwendig für hohe Ausbeuten
 - Zugabe von Ba-133
 - Laden auf MnO₂ mit 15 mL.min⁻¹
 - Ra Elution mit 4M HCl/1.5% H₂O₂ (Zerstörung des MnO₂ Resins)
 - 36h warten falls Ra-228 bestimmt werden soll (Ac-228 Einwuchs)
 - Laden des Eluates über aufeinandergesteckte LN/DGA Kartuschen
 - LN: U und Th Retention
 - Ba und Ra im Eluat, Ac auf DGA Kartusche
 - Messprobe via Mikromitfällung, Ausbeute via Ba-133
 - Ac Aufreinigung und Elution auf DGA
 - Direkte Messung über LSC oder Cerenkov, Ausbeute via Ce
 - Messprobe GPZ: via CeF₃ Mitfällung, Ausbeute via Ce

Bestimmung von Ra-226/8 in Wasserproben

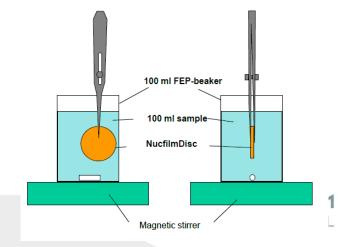

- Jüngere Methodenverbesserungen:
 - Ce Ausbeutebestimmung via ICP-MS statt Gravimetrie
 - Mikromitfällung aus Isopropanol-haltiger Lösung
 - 23 mL 1.5 mL HCl
 - Zugabe von 3g Ammoniumsulphat, 50µg Ba Träger und 5 mL Isopropanol
 - Eisbad/Vortex
 - Keine 'Seeding solution' notwendig
 - MnO-PAN Resin
 - MnO₂ fester in Resin Matrix eingebunden
 - Elution mit 5M HCl, keine vollständige Zerstörung des Resins




Ra-226 via Ra NucFilm Plättchen


- Feine MnO₂ Schicht auf Nylon Plättchen
 - Sehr glatte und ebene Oberfläche
- Direkte Ra Extraktion aus der Wasserprobe
 - $-100 \, mL$
 - Min. 4 6h, pH 4 8
 - EDTA zur Minderung von Matrixeffekten
- Ausbeute via Ba-133
- Probe nach dem Spülen bereit für α-Spektrometrie
- Ausbeuten typischerweise 75 90% (matrixabhängig)

- Ca, Ba



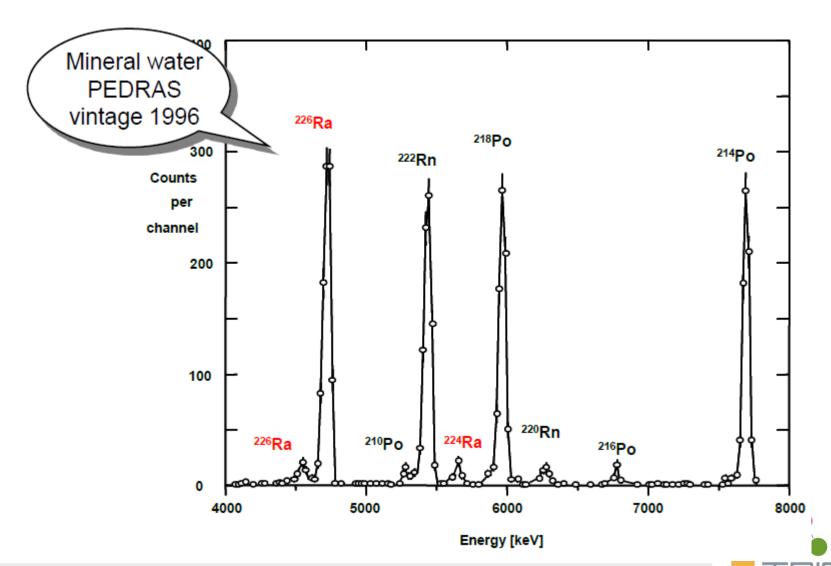
Selective adsorption on thin film

Ra-226 Bestimmung via MnO₂ Plättchen Akkreditierte Methode (Subatech, Frankreich)

- Probenvolumen 50 100 mL (filtriertes Wasser, auf pH = 0,5 2 angesäuert)
- Zugabe von Ba-133 (10 100 Bq) als interner Standard
 - ➤ Ba Gehalt der Probe < 10µg</p>
- Zugabe von EDTA zur Komplexierung von Interferenten

- pH Einstellung auf 7 8,5 mit NaOH und Zugabe von NaHCO₃ (Puffer)
- Messung der ursprünglichen Ba-133 Aktivität in der Lösung (γ-Spektrometrie)

- Platzieren des MnO₂ Plättchens im Probenbehälter
- 10 h Rühren


- Entnahme des MnO₂ Plättchens, Spülen und Trocknen
- Messung der Ba-133 Aktivität in der Lösung nach Extraktion (γ-Spektrometrie)

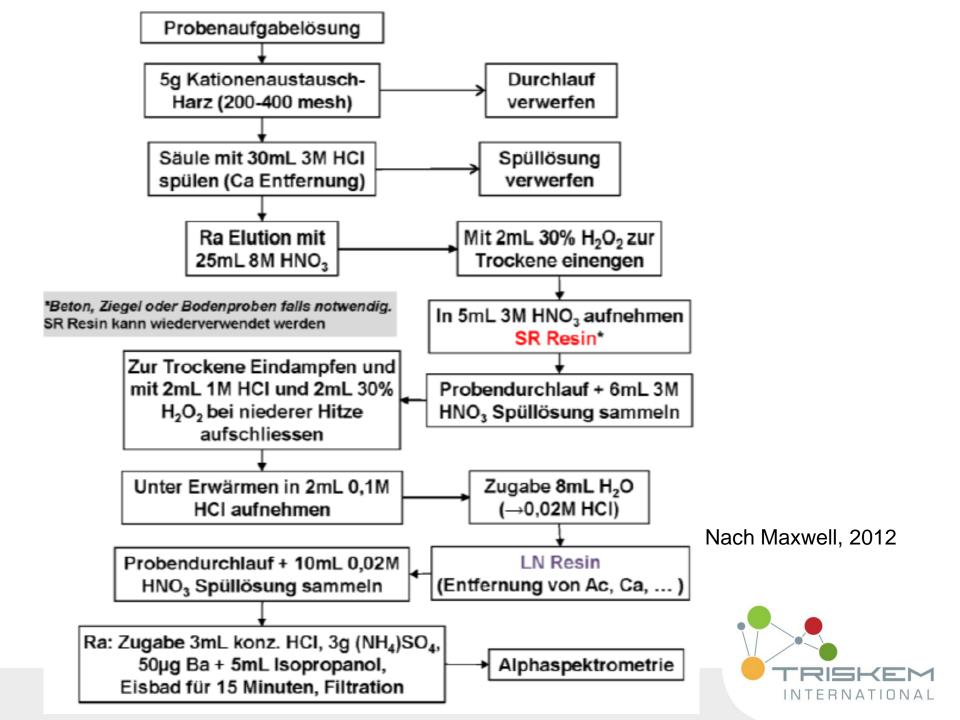
Alphaspektrometrie

➤ NWG 5 - 10 mBq.L⁻¹ für 50 – 100 mL Proben und 24 – 48h Messzeit

INTERNATIONAL

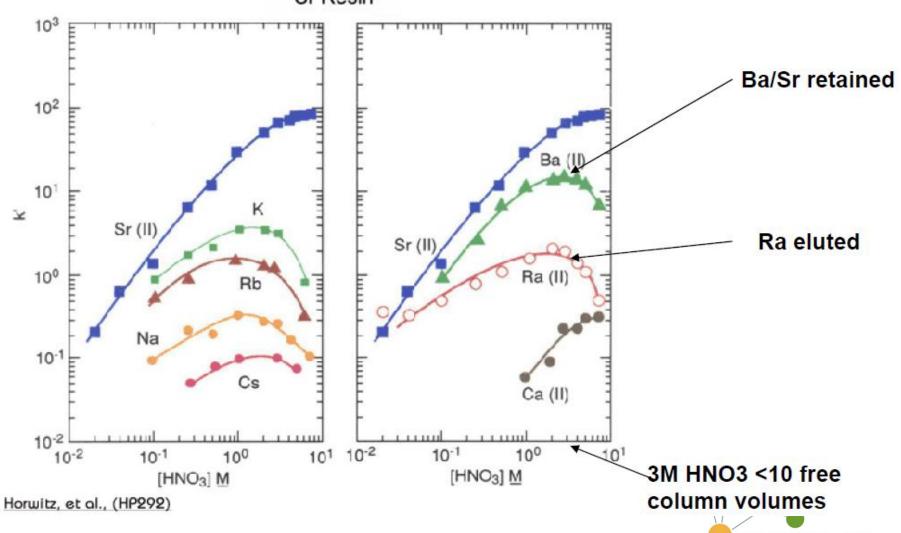
Schnellmethode für Umweltproben – Ra-226

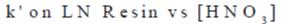

- Für feste Proben Verwendung von MnO₂ Resin nicht möglich
 - Nach Aufschluss oftmals hohe Matrixlast, kann bei pH 7 ausfallen
- Feste Proben enthalten oft grössere Mengen Ba
 - Problematisch bei der Herstellung von Messproben für die α -Spektrometrie
 - Polyatomare Interferenzen bei ICP-MS Messung
- Ba Entfernung notwendig
 - Ba/Ra Trennung (z.B.SR Resin)
 - Ba-133 kann nicht als interner Standard verwendet werden
 - Alternative: Ra-225/At-217 (aus Th-229), Vorteil: α-Spektrometrie

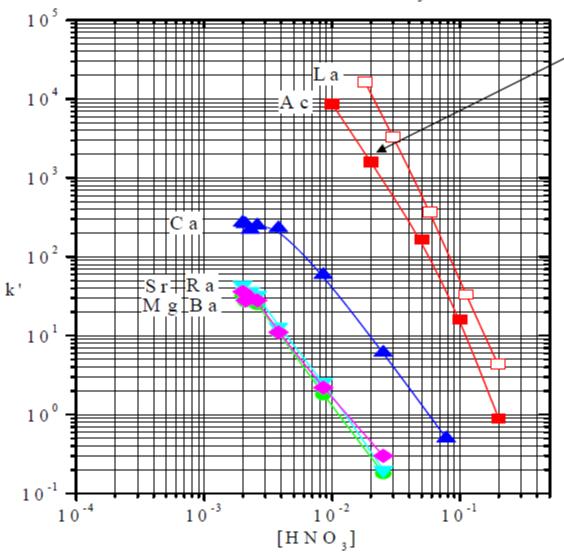


Schnellmethode für Umweltproben – Ra-226

- Schnellmethode Sherrod Maxwell (SRS)
 - Filter, 5g Pflanzen, 1g Boden, Ziegel oder Beton, Wasserproben (150 mL)
 - Veraschung (2h 700°C, Nass-Aufschluss, 5 10 min 600°C)
 - NaOH Schmelze im Zr Tiegel
 - Carbonat Fällung
 - Kationenaustausch (Ca Entfernung)
 - Optional: SR Resin (für Ba reiche Proben)
 - LN Resin (Entfernung Ac, Ca,...)
 - Mikromitfällung und α-Spektrometrie

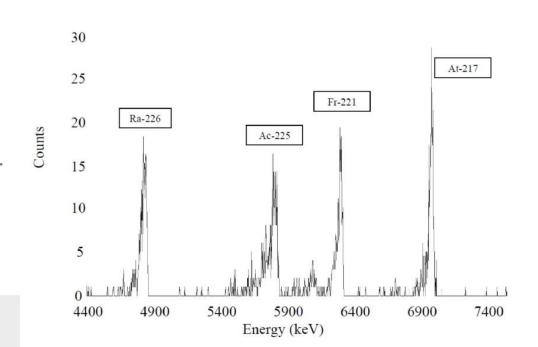





Acid dependency of k' for various ions at 23-25°C.

Sr Resin

INTERNATIONAL


Removal fo Ac-225

Ergebnisse gespikete Realproben

Matrix	Chem. Ausbeute / %	Ergebnis / mBq pro Probe	Referenzwert / mBq pro Probe	Bias /%
Vegetation	87,1 (5,7)	72,8 (5,1)	73,8	-1,2
Beton	84,6 (6,8)	180,6 (8,0)	184,5	-2,1
Ziegel	86,5 (6,6)	77,8 (4,6)	73,8	5,5
Filter	76,7 (4,2)	77,1 (6,2)	73,8	4,5
Boden	75,3 (1,9)	184,9 (6,2)	184,5	0,2
Wasser	91,8 (6,7)	70,9 (3,7)	73,8	-3,9

Nach Maxwell, 2012

- Ausbeuten zwischen 75 und 90%
- Gute Übereinstimmung mit Referenzwerten
- Saubere Spektren

Schnellmethode zur Bestimmung von Ra-228 in Wasserproben

- Methode der Ra-226 Schnellmethode ähnlich
- Calcium Carbonat Fällung
 - Zusätzlich etwas Phosphat
 - Chemische Ausbeute > 90%
- Kationenaustausch
 - Entfernt Ca, Pb, Bi, U, Th, Pa
- DGA Resin
 - Ac Aufreinigung
 - Entfernt Pb, Bi, Sr, Y,...
- Ausbeute via La (ICP-MS)
 - Ba-133 (γ-Spektrometrie) auch möglich
- Messprobenherstellung über CeF₃ Mitfällung
- Trennung in 4h, Ergebnis in > 6h möglich

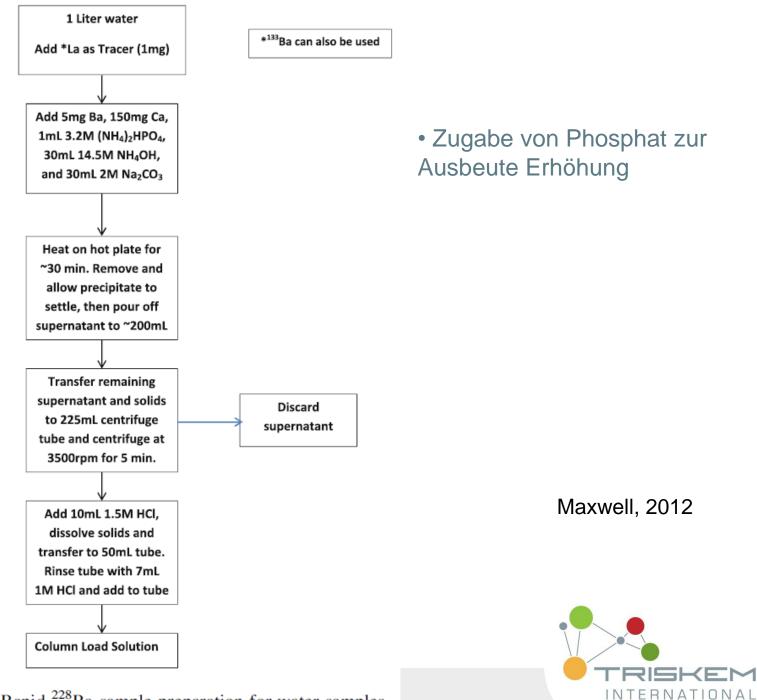


Fig. 3 Rapid ²²⁸Ra sample preparation for water samples

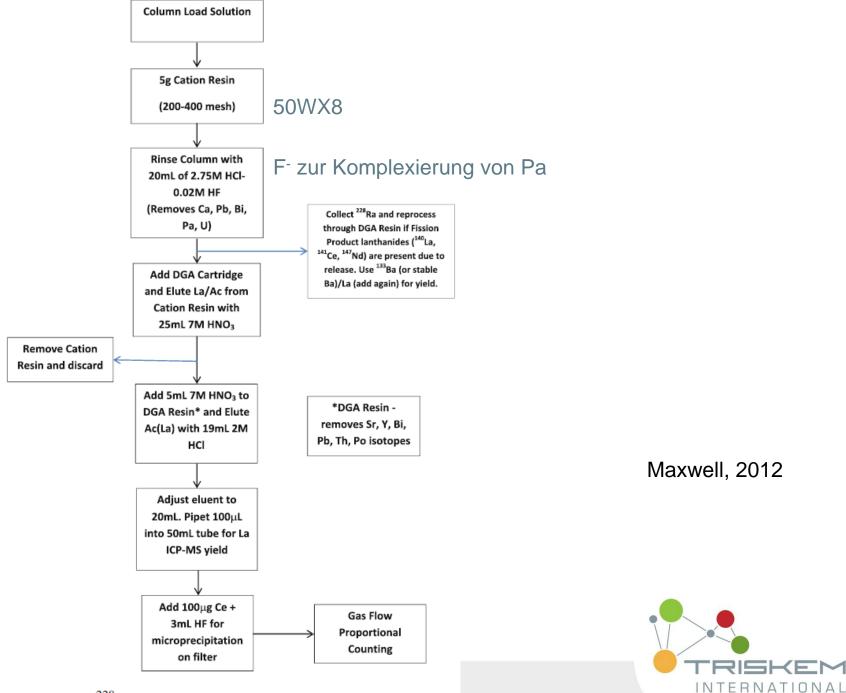
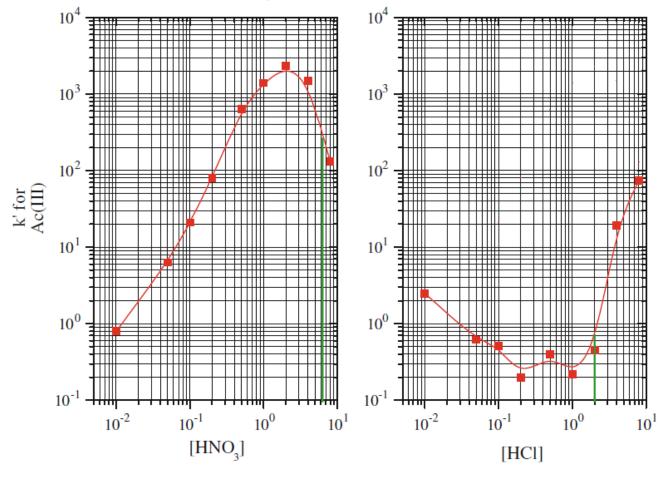
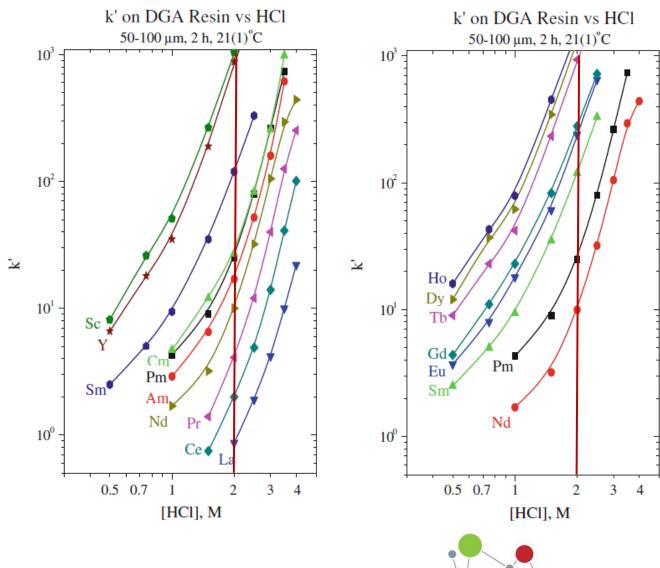



Fig. 4 Rapid ²²⁸Ra column separation for water samples

Fig. 1 Retention of Ac(III) on DGA resin courtesy PG Research Foundation, Lisle, IL, USA


k' ²²⁵Ac vs. [HNO₃] or HCl on DGA Resin, Normal

 $50\text{-}100\,\mu m$ resin, 1 h contact time, 22(2) °C

TRISKEM

Fig. 2 Retention of lanthanides and yttrium on DGA resin in HCl courtesy PG Research Foundation, Lisle, IL, USA

INTERNATIONAL

Maxwell, 2012

Ergebnisse

- Analyse von drei Sätzen gespiketer Proben
 - Drei unterschiedliche Aktivitätsniveaus (177, 355 und 1046 mBq.L⁻¹)
 - 1L Proben
 - Messzeit 60 90 min
 - Ausbeute über La / ICP-MS
 - Ausbeuten > 90%, gute Übereinstimmung mit Referenzaktivitäten

N	Ausbeute / %	Rel. St.Abw. / %	Aktivität / mBg.L ⁻¹	Rel. St.Abw. / %	Referenzaktivität / mBq.L ⁻¹	Differenz / %
7	94,3	2,3	177,5	11,6	177,2	0,2
7	92,1	1,5	347,2	7,1	354,5	-2,1
6	95,3	0,9	1008,3	2,8	1046,4	-3,6

Nach Maxwell, 2012

- Versuche zur Dekontamination
 - Dekontaminationsfaktor für Sr-90 > 4000
 - Ra-228 Wiederfindung auch nach Zugabe von 29,6 Bq Sr-90, 3,7 Bq U-238 oder 4,8 Bq Ra-226 zwischen 93 und 97% :
 - Keine Interferenz
 - Kein positiver Bias

Vielen Dank für Ihre Aufmerksamkeit!

TRISKEM INTERNATIONAL

Parc de Lormandière Bât. C - Rue Maryse Bastié - Campus de Ker Lann - 35170 Bruz - FRANCE

Tel +33 (0)2.99.05.00.09 - Fax +33 (0)2.99.05.07.27 - www.triskem-international.com - email : contact@triskem.fr