

Verwendung des CL Resins zur Bestimmung von Cl-36 und I-129 in Umwelt- und Rückbauproben

S. Happel, TKI AWT, München, 12.11.12

Einleitung

- Überwachung nuklearer Installationen
- CI-36 (und I-129) häufig bestimmt via LSC Messung
 - \triangleright CI-36 (3.01 E+04 a, E_{bmax}= 708.6 keV),
 - \triangleright I-129 (1.61 E+07 a, E_{bmax}= 151.2 keV)
 - > Trennmethoden oft umständlich und zeitaufwendig
- > CL Resin:
 - Selektiv für PGE, Ag, Au,...
 - Halogenid Selektivität durch Beladen mit Ag+
 - ➤ Entwicklung geeigneter Methoden zur Bestimmung von Cl-36 (I-129) in verschiedenen Matrizes
- Cl und I Retention als Chlorid bzw. Iodid
 - Unter Umständen Reduktion notwendig (z.B. Sn(II))

Resin Charakterisierung – CL resin

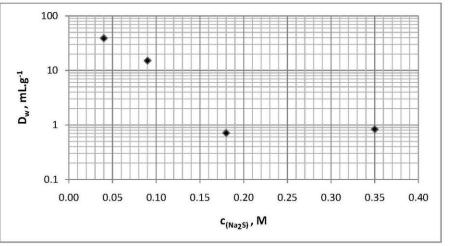
- > Bestimmung von D_w in Batch Experimenten
- ➤ Aus praktischen Erwägungen (Reduktion) in H₂SO₄

Analyt	D _w
Mn	<1
Fe	<1
Ni	<1
Со	<1
Cu	<1
Zn	25
Cd	<1
Ce	4
Pd	87000

D_w Werte, ausgewählte Elemente, 1M H₂SO₄,CLResin

- > D_w (Ag):
 - 1M H₂SO₄: 6,5E+05
 - H₂SO₄ (pH 3): 6,0E+05
 - H₂SO₄ (pH 5): 3,5E+05
 - Ag auch im Neutralen und schwach
 Saurem zurückgehalten
- > Ag Aufnahme:
 - 17 20 mg Ag⁺ pro 2 mL column
 - Einstellung Extraktionsggw .~ 30 min

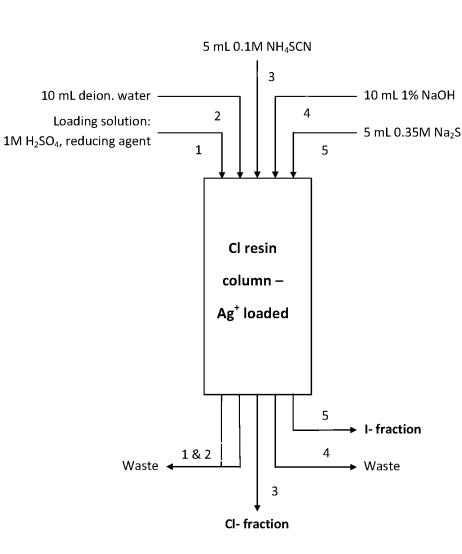
Resin selektiv für Ag und Pd


Resin Charakterisierung – Ag+ beladenes Cl resin

Analyt	D_{w}
Chlorid	1600
lodid	1980

➤ Hohe D_W Werte für Chlorid und Iodid in 1M H₂SO₄

Chlorid und Iodid Retention in 1M H₂SO₄


D_w Cl⁻ und l⁻, Ag beladenes Cl Resin, pH 7, verschiedene SCN⁻ Konzentrationen

 D_w I⁻ , Ag beladenes CI Resin, pH 7, verschiedene S²⁻ Konzentrationen

INTERNATIONAL

- ➤ Chlorid: niedrige D_w Werte für alle SCN⁻ Konzentrationen
- ➤ Iodid: hohe D_w Werte bei allen getesten SCN⁻ Konzentrationen
 - ➤ Niedrige D_w bei höheren Na₂S Konzentrationen

Schema – CL Methode

- Probenaufgabe aus 1M H₂SO₄
 - Weniger sauer, neutral oder leicht alkalisch ebenfalls möglich
 - Bevorzugt Zugabe eineReduktionsmittels (z.B. Sn(II))
- Spülen mit 10ml deion. Wasser
- Chlorid Elution mit 5ml 0,1M SCN-
- Spülen mit 10ml 1% NaOH
 - ➤ Höhere Iodid Ausbeute
- lodid Elution mit 5ml 0.35м Na₂S

Dekontaminationsfaktoren (D_f)

	D _f in Cl	D _f in I
Analyt	Fraktion	Fraktion
Mn	>210	>370
Со	>170	>1500
Ni	>170	>320
Cu	>210	>190
Sr	>180	>17000
Cd	>6900	>7700
Cs	>200	>6200
Ва	>1000	>600
Pb	>300	>720
U	>1900	>200
Cs-137	>150	>150
Co-60	>320	>320
Sr/Y-90	>180	>160
CI-36	NA	>160
I-129	>420	NA

- Trennung von Multi-Element Lösungen
 - > ICP-MS
- Cs-137, Co-60, Sr-90, Cl-36 oder l-129 enthaltende Lösungen
 - > LSC
- Generell hohe Dekon Faktoren
- Saubere Chlorid / Iodid Trennung

CI- 36 in Abwasser (Subatech)

- 4 gespikete Abwasserproben
 - >CI 0: Blindprobe
 - ➤CI 1 und CI2: Kein I-129, gleiche CI-36 Aktivtäten
 - CI 3: CI-36 / I-129 Aktivitätsverhältnis 1:1
 - ➤CI 4: CI-36 / I-129 Aktivitätsverhältnis 1:10
- Probenaufgabelösungen:
 - ≥2.5 mL Standard Lösung (Cl1 Cl4)
 - >0.5 mL 0.1M NaCl und 0.5 mL 0.1M Nal
 - >6.5 mL 1M H₂SO₄
- CI Fraktion aufgefangen, 5 mL 0.1M NaSCN zusätzlich zugegeben
- 10 mL Cocktail
- LSC (TriCarb 3170TR/SL, 12 250 keV, 60min)

Abwasser (Subatech)

		-36 al activity	I-12 Theoretica		Perkin Elmer TriCarb 3190TR/SL			Comparison of CI-36 activity		
Sample	A (Bq.L ⁻¹)	U _A (Bq.L ⁻¹)	A (Bq.L ⁻¹)	U _A (Bq.L ⁻¹)	tSIE	срт	A (Bq.L ⁻¹)	U _A (Bq.L ⁻¹)	Deviation (%)	Zeta test
CIO	Blank	-	Blank	-	236.3	5.22	< LOD	-	-	-
CI1	1.873E+04	6.556E+02	0	-	239.8	1774.8	1.809E+04	1.191E+03	-3.44	0.47
CI2	1.873E+04	6.556E+02	0	-	243.9	1871.4	1.905E+04	1.255E+03	1.72	0.23
CI3	1.873E+04	6.556E+02	1.889E+04	5.100E+02	252.0	1865.3	1.806E+04	1.189E+03	-3.57	0.49
CI4	1.873E+03	6.556E+01	1.897E+04	5.121E+02	254.2	189.85	1.792E+03	1.226E+02	-4.35	0.59

Vergleich bestimmte gegen Referenzaktivitäten, Abwasser, Bias and Zeta Testwerte, Daten von M Mokili, Subatech, Nantes (Frankreich)

- > Sehr gute Übereinstimmung
- ➤ Wiederholbarkeit Cl1/Cl2: 3.7% (N = 2, k = 1)
- Sehr saubere Cl/l Trennung

Experimente Zulauf et al.

- Gespikete Trinkwasserproben (Sr-90, Co-60, Cs-137, Cl-36, I-129)
- ➤ Gespikete Filter-, Beton- und Bodenproben (Cl-36, I-129)
 - 250 mg Proben
 - Auslaugen mit 1M NaOH bei 70°C
 - Auslaug-Ausbeuten > 90%
 - Trenn-Ausbeuten (Säule) > 95% für Cl und I
- ➤ Gute Übereinstimmung für Cl-36 und I-129
 - Feste Trennausbeuten angenommen
 - Falls möglich Ausbeutebestimmung
 - E_n Werte für alle Proben < 1
 - Bias < ±10%
 - Reproduzierbarkeit s_R < ±10%

Ergebnisse

Cl-36	determine	d activity	reference	activity	comp	arison
Matrix	A (Cl-36) / Bq	U / Bq	A (Cl-36) / Bq	U / Bq	Bias / %	E _n
Tap water	9,07	0,17	9,44	0,94	-4,0	0,41
Effluent C1	1,81E+04	1,19E+03	1,87E+04	6,55E+02	-3,4	0,47
Effluent C2	1,91E+04	1,26E+03	1,87E+04	6,55E+02	1,7	0,23
Effluent C3	1,81E+04	1,19E+03	1,87E+04	6,55E+02	-3,6	0,50
Effluent C4	1,79E+04	1,23E+03	1,87E+04	6,55E+02	-4,3	0,59
Filter	9,49	0,52	9,44	0,94	0,6	0,05
Soil	9,51	0,21	9,44	0,94	0,7	0,07
Concrete	9,36	0,08	9,44	0,94	-0,9	0,09

I-129	determine	d activity	reference	activity	comp	arison
Matrix	A (I-129) / Bq	U / Bq	A (I-129) / Bq	U / Bq	Bias / %	E n
Tap water	9,07	0,17	9,44	0,94	-4,0	0,41
Filter	7,92	0,70	8,22	1,31	-3,7	0,21
Soil	7,57	0,19	8,22	1,31	-7,9	0,53
Concrete	7,69	0,14	8,22	1,31	-6,5	0,43

Pyrolyser Methode

- ➤ Thermische Zersetzung der Proben und Desorption von CI Spezies im Pyrolyser Ofen bei 900°C (ca. 2h)
- > Probe angefeuchtet (1ml Wasser), System mit angefeuchteter Luft gespült
- Verbrennungsprodukte in alkalischer Lösung adsorbiert (Ausbeute > 80%)
 - 6 mM Na₂CO₃ verwendet; Alternative: 1M NaOH (quantitative Adsorption)
- ➤ Gaswaschflasche direkt mit Verbrennungsofen über Glassanschluss verbunden
- ≥36Cl über Ag+ beladenes Cl Resin aufgereinigt
 - Trennung ähnlich der Standardmethode
 - Beim direkten Beladen der Säule aus 6 mM Na₂CO₃ ist ein zusätzlicher Spülschritt mit 0.1M H₂SO₄ notwendig zur Verbesserung der C-14

Dekontamination (« modified wash »)

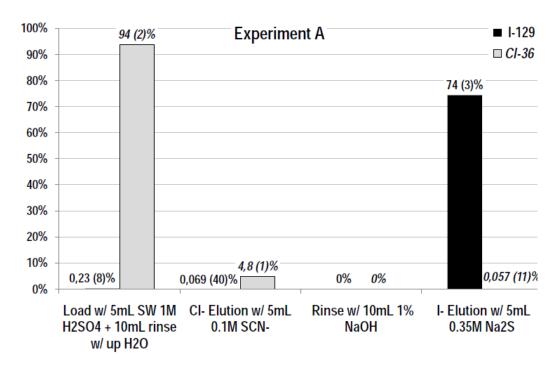
Pyrolyser Methode

Dekontaminationsfaktoren:

	³⁶ CI fraction	129 fraction
³HTO	> 500	> 2000
¹⁴ CO ₃	7	5000
¹⁴ C modified wash	700	
³⁵ S modified wash	1500	1000
³⁶ CI		> 2000
129	1300	

- ➤ Hohe DekonFaktoren
- ➤ Saubere CI / I Trennung
- ➤CI Trennausbeute (Säule) > 95%

Analyse eines gebrauchten Austauscherharzes


Sample type	Expected value	Measured value
lon exchange resin	4.1 kBq	$4.3\pm0.1~\mathrm{kBq}$

➤ Gute Übereinstimmung

Radioiod in Meerwasser

- ➤ 10 ml Meerwasser (gespiket mit Cl-36 und I-129)
- Trennung nach Standard-Methode

Elutionsstudie Meerwasser, Bombard et al.

- Kein I-129 Durchbruch bei Probenaufgabe und Spülen;
- ➤ Iodid Elution zu optimieren (Ausbeute ~75%)
- ➤ Größere Volumina, Batch Extraktion
- > Anreicherung von Iod-Isotopen aus wässrigen Proben (z.B. Nuk Med Abwässer)

INTERNATIONAL

Radioiod-Entfernung aus radioaktiven Prozessabwässern

- Zusammenarbeit mit IRE (Belgien)
- Mo-99 und I-131 Produktion durch Bestrahlung von U targets
- Prozess Abwässer enthalten grössere Mengen Radioiod
- Entfernung von Radioiod vor der Lagerung als flüssigem, radioaktivem Abfall gewünscht
- Prozesslösung stark sauer und oxidierend
 - Radioiod liegt in verschiedenen Oxidatiosstufen und Spezies vor

Radioiod-Entfernung aus radioaktiven Prozessabwässern

- Iod Entfernung über Alumina Säule plus « Mixed Bed » Säule
- « Mixed Bed » Säule
 - XAD-4 Resin für I₂
 - Ag beladenes CL Resin für lodid und Reste von lodat
- Optimierte Mischung: 4g XAD-4 / 3g CL Resin (L grade)
- Flussraten bis 160 mL.min⁻¹
- Radioiod Retention 89% 98%
- Retention von bis zu 2000 GBq pro 7g Säule

Vielen Dank für Ihre Aufmerksamkeit!

TRISKEM INTERNATIONAL

Parc de Lormandière Bât. C - Rue Maryse Bastié - Campus de Ker Lann - 35170 Bruz - FRANCE

Tel +33 (0)2.99.05.00.09 - Fax +33 (0)2.99.05.07.27 - www.triskem-international.com - email : contact@triskem.fr